ReduxPy

Release r1

Dr. Carsten Leue

Dec 17, 2020

MODULES:

1 What is Redux and Why 5
1.1 TheState Tree L o o e e e e e e e e e e 5
1.2 ACHIONS . . . o o e e e e e e e e e e e e e e e e 5
1.3 ReducCers i i e e e e e e e e e 5
L4 EPICS . o v v i e e e e e e e e e e 6
1.5 Feature Module e e e e e e 6
2 Providing a feature module 7
2.1 Example e e e e e e e e e e e e 7
3 Registering a feature module 9
4 Consuming a feature module 11
4.1 Exampleo e e e e e e 11
5 Side effects in Feature Modules 13
5.1 Example . . . L e e e e e e 13
Index 15

ReduxPy, Release r1

Implementation of a Redux store with support for adding feature modules, dynamically. The store exposes a reactive
API based on RxPY.

class redux.Action (type: str, payload: Any)
Action implementation that takes a payload

payload: Any
The action action payload

type: str
Identifier for the action, must be globally unique.

redux.Epic
The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of Callable[[rx.core.observable.observable.Observable, rx.core.observable.observable.Observable],
rx.core.observable.observable.Observable]

redux.Reducer
The central part of internal API.

This represents a generic version of type ‘origin’ with type arguments ‘params’. There are two kind of these
aliases: user defined and special. The special ones are wrappers around builtin collections and ABCs in collec-
tions.abc. These must have ‘name’ always set. If ‘inst’ is False, then the alias can’t be instantiated, this is used
by e.g. typing.List and typing.Dict.

alias of Callable[[StateType, redux._internal.types.Action], StateType]

class redux.ReduxFeatureModule (id: str, reducer: Optional[Callable[[StateType, re-
dux._internal.types.Action], StateType]], epic: Op-
tional[Callable[[rx.core.observable.observable.Observable,
rx.core.observable.observable.Observable],
rx.core.observable.observable. Observable]], dependencies:

Iterable[ReduxFeatureModule])
Defines the feature module. The ID identifies the section in the state and is also used to globally discriminate

features.

After instantiating a feature store the store will fire an initialization action for that feature. Use
of_init_feature () to register for these initialization actions.

dependencies: Iterable[redux._internal.types.ReduxFeatureModule]
Dependencies on other feature modules

epic: Optional[Callable[[rx.core.observable.observable.Observable, rx.core.observable
Epic that handles module specific asynchronous operations.

id: str
Identifier of the module, will also be used as a namespace into the state.

reducer: Optional[Callable[[StateType, redux._internal.types.Action], StateType]]
Reducer that handles module specific actions.

class redux.ReduxRootStore (as_observable: Callable[], rx.core.observable.observable.Observable],
dispatch: Callable[[redux._internal.types.Action], None],
add_feature_module: Callable[[redux._internal.types.ReduxFeatureModule],
None], on_next: Callable[[redux._internal.types.Action], None],
on_completed: Callable[], None])

MODULES: 1

https://pypi.org/project/Rx/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

ReduxPy, Release r1

Implementation of a store that manages sub-state as features. Features are added to the store automatically,
when required by the select method.

add_feature module: Callable[[redux._internal.types.ReduxFeatureModule], None]
Adds a new feature module

as_observable: Callable[], rx.core.observable.observable.Observable]
Converts the store to an observable of state emissions

dispatch: Callable[[redux._internal.types.Action], None]
Dispatches a single action to the store

on_completed: Callable[], None]
Shuts down the store

on_next: Callable[[redux._internal.types.Action], None]
Alias for dispatch ()

redux.combine_epics (*epics)
Combines a sequence of epics into one single epic by merging them

Parameters epics (Iterable[Callable[[Observable, Observable], Observable]])
— the epics to merge

Return type Callable[[Observable, Observable], Observable]
Returns The merged epic

redux.combine_reducers (reducers)
Creates a new reducer from a mapping of reducers.

Parameters reducers (Mapping[str,Callable[[~StateType, Action], ~StateType]]) —the
mapping from state partition to reducer

Return type Callable[[Mapping[str, ~StateType], Action], Mapping[str, ~StateType]]
Returns A reducer that dispatches actions against each of the mapped reducers

redux.create_action (fype_name)
Creates a function that produces an action of the given type

Parameters type_name (str) — type of the action
Return type Callable[[~PayloadType], Action]
Returns A function that accepts the action payload and creates the action

redux.create_feature_module (identifier, reducer=None, epic=None, dependencies=())
Constructs a new feature module descriptor

Parameters
e identifier (str) - the identifier of the feature

* reducer (Optional[Callable[[~StateType, Action], ~StateType]]) — optional re-
ducer

* epic (Optional[Callable[[Observable, Observable], Observable]]) — op-
tional epic

* dependencies (Iterable[ReduxFeatureModule]) — optional dependencies on
other features

Return type ReduxFeatureModule

Returns The feature module descriptor

2 MODULES:

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable

ReduxPy, Release r1

redux.create_store (initial_state=None)
Constructs a new store that can handle feature modules.

Parameters initial_state (Optional[Mapping[str, ~StateType]]) — optional initial state
of the store, will typically be the empty dict

Return type ReduxRootStore
Returns An implementation of the store

redux.handle_actions (action_map, initial_state=None)
Creates a new reducer from a mapping of action name to reducer for that action.

Parameters

* action_map (Mapping[str, Callable[[~StateType, Action], ~StateType]]) —
mapping from action name to reducer for that action

* initial_ state (Optional[~StateType]) — optional initial state used if no reducer
matches

Return type Callable[[~StateType, Action], ~StateType]
Returns A reducer function that handles the actions in the map

redux.of_init_feature (identifier)
Operator to test for the initialization action of a feature

Parameters identifier (str) - the identifier of the feature
Return type Callable[[Observable], Observable]
Returns Operator function that accepts init actions for the feature, once

redux.of_type (type_name)
Returns a reactive operator that filters for actions of the given type

Parameters type_name (st r) — type of the action to filter for
Return type Callable[[Observable], Observable]
Returns The filter operator function

redux.select (selector)
Reactive operator that applies a selector and shares the result across multiple subscribers

Parameters selector (Callable[[~T1], ~T2]) — the selector function
Return type Callable[[Observable], Observable]
Returns The reactive operator

redux.select_action_payload (action)
Selects the payload from the action

Parameters action (Action) — the action object
Return type ~PayloadType
Returns the payload of the action

redux.select_feature (identifier, initial_state=None)
Returns a function that returns the feature state from the root state

Parameters

e identifier (str) - identifier of the feature

MODULES: 3

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str

ReduxPy, Release r1

* initial_state (Optional[~StateType]) — fallback state used if the feature state is not
defined

Return type Callable[[Mapping[str, ~StateType]], Opt ional[~StateType]]
Returns The selector function

Implementation of a Redux store with support for adding feature modules, dynamically. The store exposes a reactive
API based on RxPY.

4 MODULES:

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://pypi.org/project/Rx/

CHAPTER
ONE

WHAT IS REDUX AND WHY

Complex applications - client or server - often need to maintain state and the more complex the application becomes
the harder it is to keep track of that state. The Redux pattern addresses the management of complex state by following
the ideas of Flux, CQRS, and Event Sourcing.

The basic principle boils down to:
« Single source of truth: The state of your whole application is stored in an object tree within a single store.
* State is read-only: The only way to change the state is to emit an action, an object describing what happened.

* Changes are made with pure functions: To specify how the state tree is transformed by actions, you write
pure reducers.

1.1 The State Tree

All state is kept in a single, read-only dictionary of type ReduxRoot State. This state is maintained and managed
by the ReduxRoot Store object that can be created using the create_store () method. The store allows to
dispatch actions, listen for state changes and add new features.

1.2 Actions

State cannot be changed but we can create new state based on existing state and an action. The action describes how
the current state will be transformed.

All state transforms are synchronous operations and will be executed by a reducer.

1.3 Reducers

Reducers are pure functions that transform a current state object into a new state object given an action.

http://facebook.github.io/flux/
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://redux.js.org/introduction/three-principles
https://redux.js.org/basics/actions
https://redux.js.org/basics/reducers

ReduxPy, Release r1

1.4 Epics

It is a basic redux principle that all operations that compute new state are executed by synchronous reducers. In order
to implement asynchronous operations we introduce the concept of Epics. An epic transforms an action into another
action or set of actions and this transform may be executed asynchronously. The resulting actions could in turn give
rise to new actions via an epic or they could be interpreted by a reducer.

We represent an epic as a reactive operator that transforms an action input sequence (and optionally also a state
sequence) into an action otput sequence.

1.5 Feature Module

There should only be one single redux store instance per application. In traditional redux this means that the set
of reducers and epics must be known at instantiation time of the store. This makes it hard to compose the overall
application from a set of reusable modules.

We introduce the concept of a feature module, motivated by dynamic modules and feature store.

A feature module defines a unique identifier and optionally a reducer, epic and dependencies. The identifier is used to
scope state in a top level dictionary and it is possible to add a new feature module to an existing store at any point in
time.

6 Chapter 1. What is Redux and Why

https://redux-observable.js.org/
https://rxpy.readthedocs.io/en/latest/operators.html
https://github.com/microsoft/redux-dynamic-modules
https://ngrx.io/guide/schematics/feature

CHAPTER
TWO

PROVIDING A FEATURE MODULE

Create and export an instance of ReduxFeatureModule for your module. The module definition consists of:
* aunique module identifier. This identifier is also used as a namespace in the redux state
* an optional reducer that operates on that namespace
* an optional epic to handle asynchronous actions

* an optional list of other feature modules this module depends on

2.1 Example

from redux import create_feature_module, ReduxFeatureModule

sample_feature_module: ReduxFeatureModule = create_feature_module (
'SAMPLE_FEATURE', sample_reducer, sample_epic, [depl, dep2]

ReduxPy, Release r1

8 Chapter 2. Providing a feature module

CHAPTER
THREE

REGISTERING A FEATURE MODULE

Register the feature module with the root store using the add_feature_module () method. This will also register
all dependent modules in topology order.

from redux import create_store, ReduxRootStore

store: ReduxRootStore = create_store ()
store.add_feature_module (sampleFeature)

ReduxPy, Release r1

10 Chapter 3. Registering a feature module

CHAPTER
FOUR

CONSUMING A FEATURE MODULE

Use the select_feature () method to create a selector for the desired feature.

4.1 Example

from redux import select_feature

select_sample = select_feature(sample_feature)

11

ReduxPy, Release r1

12 Chapter 4. Consuming a feature module

CHAPTER
FIVE

SIDE EFFECTS IN FEATURE MODULES

Feature modules may provide side effects, aka epics, for asynchronous processing. Sometimes such epics require
an initialization event to execute bootstrapping logic. The store sends an initialization event for this purpose, after a
feature module has been initialized. Use the of_init_feature () method to subscribe to this event.

5.1 Example

from redux import of_init_feature, Epic

from rx.operators import map

initEpic: Epic = lambda actions_, state_: actions_.pipe(of_init_feature (sample_
—feature), map(...))

13

ReduxPy, Release r1

14 Chapter 5. Side effects in Feature Modules

A

Action (class in redux), 1

add_feature_module (redux.ReduxRootStore at-
tribute), 2

as_observable (redux.ReduxRootStore attribute), 2

C

combine_epics () (in module redux), 2
combine_reducers () (in module redux), 2
create_action () (in module redux), 2
create_feature_module () (in module redux), 2
create_store () (in module redux), 2

D

dependencies
tribute), 1
dispatch (redux.ReduxRootStore attribute), 2

E

Epic (in module redux), 1
epic (redux.ReduxFeatureModule attribute), 1

Fl

handle_actions () (in module redux), 3

id (redux.ReduxFeatureModule attribute), 1

M

module
redux, |

O

of_init_feature () (in module redux), 3
of_type () (in module redux), 3

on_completed (redux.ReduxRootStore attribute), 2
on_next (redux.ReduxRootStore attribute), 2

P

payload (redux.Action attribute), 1

(redux.ReduxFeatureModule at-

INDEX

R

Reducer (in module redux), 1
reducer (redux.ReduxFeatureModule attribute), 1
redux

module, 1
ReduxFeatureModule (class in redux), 1
ReduxRootStore (class in redux), 1

S

select () (in module redux), 3
select_action_payload() (in module redux), 3
select_feature () (in module redux), 3

T

type (redux.Action attribute), 1

15

	What is Redux and Why
	The State Tree
	Actions
	Reducers
	Epics
	Feature Module

	Providing a feature module
	Example

	Registering a feature module
	Consuming a feature module
	Example

	Side effects in Feature Modules
	Example

	Index

